Package: acss.data 1.0

acss.data: Data Only: Algorithmic Complexity of Short Strings (Computed via Coding Theorem Method)

Data only package providing the algorithmic complexity of short strings, computed using the coding theorem method. For a given set of symbols in a string, all possible or a large number of random samples of Turing machines (TM) with a given number of states (e.g., 5) and number of symbols corresponding to the number of symbols in the strings were simulated until they reached a halting state or failed to end. This package contains data on 4.5 million strings from length 1 to 12 simulated on TMs with 2, 4, 5, 6, and 9 symbols. The complexity of the string corresponds to the distribution of the halting states of the TMs.

Authors:Fernando Soler Toscano [aut], Nicolas Gauvrit [aut], Hector Zenil [aut], Henrik Singmann [aut, cre]

acss.data_1.0.tar.gz
acss.data_1.0.zip(r-4.5)acss.data_1.0.zip(r-4.4)acss.data_1.0.zip(r-4.3)
acss.data_1.0.tgz(r-4.4-any)acss.data_1.0.tgz(r-4.3-any)
acss.data_1.0.tar.gz(r-4.5-noble)acss.data_1.0.tar.gz(r-4.4-noble)
acss.data_1.0.tgz(r-4.4-emscripten)acss.data_1.0.tgz(r-4.3-emscripten)
acss.data.pdf |acss.data.html
acss.data/json (API)

# Install 'acss.data' in R:
install.packages('acss.data', repos = c('https://singmann.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.18 score 1 packages 259 downloads 1 exports 0 dependencies

Last updated 11 years agofrom:428dfde3e2. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:acss_data

Dependencies: